Datos Fundamentales de Empresas Cotizadas en Bolsa

Mercado de Valores

SimFin es una plataforma que proporciona datos financieros fundamentales y precios de acciones de empresas cotizadas en mercados estadounidenses (NYSE, NASDAQ, etc.). En el momento de escribir este artículo, SimFin ofrece datos de 2,452 empresas diferentes. En este artículo vamos a hablar de SimFin, los datos y servicios que ofrece, cómo los puedes descargarlo y cómo usar python para transformar los datos. Para este análisis, usaremos los datos históricos que

Árboles de Decisión con ejemplos en Python

Árbol de Decisión para el problema de clasificación Iris

Los árboles de decisión son una técnica de aprendizaje automático supervisado muy utilizada en muchos negocios. Como su nombre indica, esta técnica de machine learning toma una serie de decisiones en forma de árbol. Los nodos intermedios (las ramas) representan soluciones. Los nodos finales (las hojas) nos dan la predicción que vamos buscando. Los árboles de decisión pueden usarse para resolver problemas tanto de clasificación como de regresión. Veamos cómo

¿Cómo usar Regresión Logística en Python?

Regresión Logística

La regresión logística es una técnica de aprendizaje supervisado para clasificación. Es muy usada en muchas industrias debido a su escalabilidad y explicabilidad. En este artículo vamos a ver cómo entrenar y usar un modelo de regresión logística. Si quieres repasar la teoría de esta técnica de machine learning, puedes consultar este artículo. Instrucciones rápidas Ejemplo de Regresión Logística en Python Datos Vamos a suponer que queremos predecir cuál es

Regresión Polinómica en Python con scikit-learn

Regresión Polinómica

En algunas ocasiones nos encontraremos con datos que siguen una función polinómica. En estos casos, el mejor modelo que podemos usar es la regresión polinómica. Este artículo explica la teoría detrás de la regresión polinómica y cómo usarla en python. Regresión Polinómica – Teoría La regresión polinómica es, en realidad, una regresión lineal. El truco está en: Calcular atributos polinómicos Usar la regresión lineal que ya hemos visto. Vamos a

Regresión Lineal con ejemplos en Python

Regresión Lineal con ejemplos en Python

La regresión lineal es una de las técnicas más usadas en Machine Learning. Su fortaleza estriba en su simplicidad e interpretabilidad. La regresión polinómica, como ya veremos, es una extensión de la regresión lineal. Regresión Lineal – Teoría La regresión lineal es una técnica paramétrica de machine learning. Con «paramétrica» queremos decir que incluso antes de mirar a los datos, ya sabemos cuántos parámetros (o coeficientes) vamos a necesitar. En

Librerías de Python para Machine Learning

Bokeh es una librería de python para visualizar datos de forma interactiva en un navegador web

El lenguaje de programación Python está adquiriendo muchísima popularidad en el mundo de Machine Learning. En parte, esto se debe a la disponibilidad de una gran cantidad de librerías para visualización, cálculo numérico, análisis de datos, aprendizaje automático y deep learning. Las librerías de python que vamos a ver son gratuitas. También hay otros lenguajes de programación que también están indicados para el aprendizaje automático, por ejemplo R. Sin embargo,

Error Cuadrático Medio para Regresión

Calculando el Error Cuadrático Medio

El Error Cuadrático Medio es el criterio de evaluación más usado para problemas de regresión. Se usa sobre todo cuando usamos aprendizaje automático supervisado. Para cada dato histórico podremos indicar el resultado correcto. Vamos a ver como se calcula. Cálculo del Error Cuadrático Medio Vamos a calcular el error cuadrático medio con un ejemplo. En la figura vemos que estamos usando una regresión lineal (en azul) para estimar los datos