Precision, Recall, F1, Accuracy en clasificación

Precision, Recall, F1, Accuracy, Confusion Matrix

Cuando necesitamos evaluar el rendimiento en clasificación, podemos usar las métricas de precision, recall, F1, accuracy y la matriz de confusión. Vamos a explicar cada uno de ellos y ver su utilidad práctica con un ejemplo. Términos es Español Estas métricas también tienen su correspondiente nombre en español, pero es importante que sepas su nombre en inglés porque muchas librerías (scikit-learn), las tienen ya implementadas. En esta tabla puedes encontrar la correspondencia. Inglés Español Precision Precisión Recall Exhaustividad F1-score Valor-F …

Continuar LeyendoPrecision, Recall, F1, Accuracy en clasificación

Basura Espacial: competición con machine learning

Kelvins Collision Avoidance Challenge

La Agencia Espacial Europea ha creado una competición de machine learning para predecir el riesgo de colisión entre basura espacial y satélites de observación de la Tierra. La competición empieza oficialmente el 16 de Octubre. A partir de ese momento será posible descargar los datos y enviar soluciones. La competición finaliza el 16 de Diciembre de 2019. Basura Espacial El espacio no está tan vacío como solía estar. Más de 34.000 elementos de desechos espaciales de más de 10 cm …

Continuar LeyendoBasura Espacial: competición con machine learning

Random Forest (Bosque Aleatorio): combinando árboles

random-forest-bosque-aleatorio

Un Random Forest (Bosque Aleatorio), es una técnica de aprendizaje automático muy popular. Los Random Forests tienen una capacidad de generalización muy alta para muchos problemas. Limitaciones de los Árboles de Decisión Los árboles de decisión tienen la tendencia de sobre-ajustar (overfit). Esto quiere decir que tienden a aprender muy bien los datos de entrenamiento pero su generalización no es tan buena. Una forma de mejorar la generalización de los árboles de decisión es usar regularización. Para mejorar mucho más la …

Continuar LeyendoRandom Forest (Bosque Aleatorio): combinando árboles

Aguathon: mi solución al primer Hackathon del Agua

Río Ebro a su paso por Zaragoza

En este artículo explico mi solución al Aguathon: el primer Hackathon del Agua, organizado por ITAINNOVA. Introducción al Aguathon: el Hackathon del Agua de ITAINNOVA El Instituto Tecnológico de Aragón ha organizado el 1er Hackathon del Agua, “AGUATHON”. A continuación vamos a ver las partes más relevantes para entender en qué consiste este reto, por qué es tan importante, qué tipo de solución necesitan, qué datos proporcionan y cómo evalúan las soluciones propuestas. Objetivo El objetivo de este Hackathon es modelizar el …

Continuar LeyendoAguathon: mi solución al primer Hackathon del Agua

Árboles de Decisión con ejemplos en Python

Árbol de Decisión para el problema de clasificación Iris

Los árboles de decisión son una técnica de aprendizaje automático supervisado muy utilizada en muchos negocios. Como su nombre indica, esta técnica de machine learning toma una serie de decisiones en forma de árbol. Los nodos intermedios (las ramas) representan soluciones. Los nodos finales (las hojas) nos dan la predicción que vamos buscando. Los árboles de decisión pueden usarse para resolver problemas tanto de clasificación como de regresión. Veamos cómo se usan en cada caso con ejemplos. Árboles de Decisión …

Continuar LeyendoÁrboles de Decisión con ejemplos en Python

¿Cómo usar Regresión Logística en Python?

Regresión Logística

La regresión logística es una técnica de aprendizaje supervisado para clasificación. Es muy usada en muchas industrias debido a su escalabilidad y explicabilidad. En este artículo vamos a ver cómo entrenar y usar un modelo de regresión logística. Si quieres repasar la teoría de esta técnica de machine learning, puedes consultar este artículo. Instrucciones rápidas Ejemplo de Regresión Logística en Python Datos Vamos a suponer que queremos predecir cuál es la probabilidad que tiene un estudiante de aprobar un examen …

Continuar Leyendo¿Cómo usar Regresión Logística en Python?

Regresión Logística para Clasificación

Regresión Logística

La Regresión Logística es una técnica de aprendizaje automático para clasificación. Es una red neuronal en miniatura. De hecho, la regresión logística, se trata de una red neuronal con exactamente una neurona. Matemáticas de la Regresión Logística Podemos representar lo que hace la regresión logística en la siguiente figura: Los valores de x corresponden los distintos atributos de nuestro problema. Por ejemplo, si queremos saber si un correo electrónico es deseado o no deseado (spam), los valores de x podrían corresponder con …

Continuar LeyendoRegresión Logística para Clasificación

Gradiente Descendiente para aprendizaje automático

El gradiente descendiente es la base de aprendizaje en muchas técnicas de machine learning. Por ejemplo, es fundamental en deep learning para entrenar redes neuronales. También es necesario para la regresión logística. Y en muchos casos, al hacer regresión lineal o polinómica es mejor usar el método del gradiente descendiente que el de los mínimos cuadrados. Repasemos el Error Cuadrático Medio Como vimos, el error cuadrático medio es un forma de medir el error de un modelo de aprendizaje automático …

Continuar LeyendoGradiente Descendiente para aprendizaje automático

Redes neuronales desde cero (I) – Introducción

En este primer post de una serie de tres, hablaremos de una de las ramas más importantes del Machine Learning y la Inteligencia Artificial, las redes neuronales. Abordaremos este tema desde cero, empezando por la historia de las redes neuronales, sus conceptos básicos, nos adentraremos en las matemáticas que están involucradas en ellas e implementaremos un ejemplo de Redes Neuronales desde cero para reconocer cierto tipo de patrones en imágenes. Introducción Las redes neuronales (neural networks) se enmarcan dentro del …

Continuar LeyendoRedes neuronales desde cero (I) – Introducción

Regresión Polinómica en Python con scikit-learn

Regresión Polinómica

En algunas ocasiones nos encontraremos con datos que siguen una función polinómica. En estos casos, el mejor modelo que podemos usar es la regresión polinómica. Este artículo explica la teoría detrás de la regresión polinómica y cómo usarla en python. Regresión Polinómica – Teoría La regresión polinómica es, en realidad, una regresión lineal. El truco está en: Calcular atributos polinómicos Usar la regresión lineal que ya hemos visto. Vamos a verlo con fórmulas, porque creo que va a ser más …

Continuar LeyendoRegresión Polinómica en Python con scikit-learn