Random Forest (Bosque Aleatorio): combinando árboles

random-forest-bosque-aleatorio

Un Random Forest (Bosque Aleatorio), es una técnica de aprendizaje automático muy popular. Los Random Forests tienen una capacidad de generalización muy alta para muchos problemas. Limitaciones de los Árboles de Decisión Los árboles de decisión tienen la tendencia de sobre-ajustar (overfit). Esto quiere decir que tienden a aprender muy bien los datos de entrenamiento pero su generalización no es tan buena. Una forma de mejorar la generalización de los árboles

Aguathon: mi solución al primer Hackathon del Agua

Río Ebro a su paso por Zaragoza

En este artículo explico mi solución al Aguathon: el primer Hackathon del Agua, organizado por ITAINNOVA. Introducción al Aguathon: el Hackathon del Agua de ITAINNOVA El Instituto Tecnológico de Aragón ha organizado el 1er Hackathon del Agua, “AGUATHON”. A continuación vamos a ver las partes más relevantes para entender en qué consiste este reto, por qué es tan importante, qué tipo de solución necesitan, qué datos proporcionan y cómo evalúan las soluciones

Árboles de Decisión con ejemplos en Python

Árbol de Decisión para el problema de clasificación Iris

Los árboles de decisión son una técnica de aprendizaje automático supervisado muy utilizada en muchos negocios. Como su nombre indica, esta técnica de machine learning toma una serie de decisiones en forma de árbol. Los nodos intermedios (las ramas) representan soluciones. Los nodos finales (las hojas) nos dan la predicción que vamos buscando. Los árboles de decisión pueden usarse para resolver problemas tanto de clasificación como de regresión. Veamos cómo

Regresión Logística para Clasificación

Regresión Logística

La Regresión Logística es una técnica de aprendizaje automático para clasificación. Es una red neuronal en miniatura. De hecho, la regresión logística, se trata de una red neuronal con exactamente una neurona. Matemáticas de la Regresión Logística Podemos representar lo que hace la regresión logística en la siguiente figura: Los valores de x corresponden los distintos atributos de nuestro problema. Por ejemplo, si queremos saber si un correo electrónico es

Gradiente Descendiente para aprendizaje automático

Gradiente Descendiente para aprendizaje automático

El gradiente descendiente es la base de aprendizaje en muchas técnicas de machine learning. Por ejemplo, es fundamental en deep learning para entrenar redes neuronales. También es necesario para la regresión logística. Y en muchos casos, al hacer regresión lineal o polinómica es mejor usar el método del gradiente descendiente que el de los mínimos cuadrados. Repasemos el Error Cuadrático Medio Como vimos, el error cuadrático medio es un forma

Redes neuronales desde cero (I) – Introducción

Redes neuronales desde cero (I) – Introducción

En este primer post de una serie de tres, hablaremos de una de las ramas más importantes del Machine Learning y la Inteligencia Artificial, las redes neuronales. Abordaremos este tema desde cero, empezando por la historia de las redes neuronales, sus conceptos básicos, nos adentraremos en las matemáticas que están involucradas en ellas e implementaremos un ejemplo de Redes Neuronales desde cero para reconocer cierto tipo de patrones en imágenes.

Regresión Polinómica en Python con scikit-learn

Regresión Polinómica

En algunas ocasiones nos encontraremos con datos que siguen una función polinómica. En estos casos, el mejor modelo que podemos usar es la regresión polinómica. Este artículo explica la teoría detrás de la regresión polinómica y cómo usarla en python. Regresión Polinómica – Teoría La regresión polinómica es, en realidad, una regresión lineal. El truco está en: Calcular atributos polinómicos Usar la regresión lineal que ya hemos visto. Vamos a

Regresión Lineal con ejemplos en Python

Regresión Lineal con ejemplos en Python

La regresión lineal es una de las técnicas más usadas en Machine Learning. Su fortaleza estriba en su simplicidad e interpretabilidad. La regresión polinómica, como ya veremos, es una extensión de la regresión lineal. Regresión Lineal – Teoría La regresión lineal es una técnica paramétrica de machine learning. Con «paramétrica» queremos decir que incluso antes de mirar a los datos, ya sabemos cuántos parámetros (o coeficientes) vamos a necesitar. En

Inteligencia Artificial aplicada a meneame.net

Inteligencia Artificial aplicada a menéame

En este artículo, vamos a aplicar Inteligencia Artificial a todas las noticias de portada de meneame.net en 2018. Empezaremos realizando un análisis estadístico y visualización de datos. Después usaremos Procesamiento del Lenguaje Natural y Aprendizaje Automático. Quisiera agradecer a Alfonso Martínez Heras su colaboración en este proyecto. Alfonso se ha encargado de crear un web scrapper para obtener las historias de portada de meneame.net automáticamente. ¿Qué es meneame.net? A lo mejor

Análisis de Errores en Machine Learning

El alto error de entrenamiento indica que el modelo de machine learning es demasiado simple

El análisis de errores es una de las fases del proceso de machine learning más importantes. El análisis de errores nos va a permitir saber qué hacer para mejorar el rendimiento de un modelo de machine learning. Para analizar errores, nos vamos a concentrar en los errores entrenamiento y los errores de generalización. En particular: Nos aseguraremos que el modelo de machine learning sea capaz de aprender. Para ello procuraremos